## LIST OF FIGURES

| Figure 2–1  | Typical Driver and Blanket Spent Nuclear Fuel Elements                            | 2-2  |
|-------------|-----------------------------------------------------------------------------------|------|
| Figure 2–2  | Electrometallurgical Treatment Process Flow Diagram                               | 2-7  |
| Figure 2–3  | PUREX Process Flow Diagram                                                        | 2-9  |
| Figure 2–4  | High-Integrity Can Process Flow Diagram                                           | 2-9  |
| Figure 2–5  | Melt and Dilute Process Flow Diagram (Option 1 or 2)                              | 2-10 |
| Figure 2–6  | Melt and Dilute Process Flow Diagram (Option 3)                                   | 2-11 |
| Figure 2–7  | Glass Material Oxidation and Dissolution System (GMODS) Process                   |      |
| Figure 2–8  | Direct Plasma Arc-Vitreous Ceramic Treatment Process Flow Diagram                 |      |
| Figure 2–9  | Chloride Volatility Process Flow Diagram                                          |      |
| Figure 2–10 | Argonne National Laboratory-West                                                  | 2-17 |
| Figure 2–11 | Fuel Conditioning Facility at ANL-W                                               |      |
| Figure 2–12 | Main Floor Layout of the Fuel Conditioning Facility at ANL-W                      | 2-19 |
| Figure 2–13 | Hot Fuel Examination Facility at ANL-W                                            |      |
| Figure 2–14 | Main Floor Layout of the Hot Fuel Examination Facility at ANL-W                   | 2-21 |
| Figure 2–15 | Zero Power Physics Reactor Materials Storage Building at ANL-W                    |      |
| Figure 2–16 | Radioactive Scrap and Waste Facility at ANL-W                                     |      |
| Figure 2–17 | Idaho Nuclear Technology and Engineering Center at INEEL                          | 2-24 |
| Figure 2–18 | The F-Canyon at SRS                                                               | 2-27 |
| Figure 2–19 | F-Canyon Building Sections (Hot Canyon and Warm Canyon) at SRS                    | 2-28 |
| Figure 2–20 | Building 105-L at SRS                                                             | 2-29 |
| Figure 2–21 | Defense Waste Processing Facility at SRS                                          | 2-30 |
| Figure 2–22 | Proposed Action and Alternatives                                                  | 2-32 |
| Figure 2–23 | Schematic for Driver and Blanket Spent Nuclear Fuel Treatment in Alternative 1    | 2-33 |
| Figure 2–24 | Schematic for Blanket Spent Nuclear Fuel Treatment in Alternative 2               | 2-34 |
| Figure 2–25 | Schematic for Blanket Spent Nuclear Fuel Treatment in Alternative 3               | 2-35 |
| Figure 2–26 | Schematic for Blanket Spent Nuclear Fuel Treatment in Alternative 4               | 2-36 |
| Figure 2–27 | Schematic for Blanket Spent Nuclear Fuel Treatment in Alternative 5               | 2-37 |
| Figure 2–28 | Schematic for Driver and Blanket Spent Nuclear Fuel in Alternative 6              | 2-38 |
| Figure 3–1  | Generalized Land Use at INEEL and Vicinity                                        | 3-3  |
| Figure 3–2  | Surface Water Features at Idaho National Engineering and Environmental Laboratory |      |
| Figure 3–3  | Flood Area for the Probable Maximum Flood-Induced Overtopping Failure of the      |      |
|             | Mackay Dam                                                                        | 3-11 |
| Figure 3–4  | Distribution of Plant Communities at Idaho National Engineering and Environmental |      |
|             | Laboratory                                                                        | 3-15 |
| Figure 3–5  | Generalized Land Use at Savannah River Site and Vicinity                          |      |
| Figure 3–6  | Locations of Water Bodies and Floodplains at the Savannah River Site              | 3-39 |
| Figure 3–7  | Distribution of Plant Communities at Savannah River Site                          |      |